18 research outputs found

    Finite-time Lagrangian transport analysis: Stable and unstable manifolds of hyperbolic trajectories and finite-time Lyapunov exponents

    Get PDF
    We consider issues associated with the Lagrangian characterisation of flow structures arising in aperiodically time-dependent vector fields that are only known on a finite time interval. A major motivation for the consideration of this problem arises from the desire to study transport and mixing problems in geophysical flows where the flow is obtained from a numerical solution, on a finite space-time grid, of an appropriate partial differential equation model for the velocity field. Of particular interest is the characterisation, location, and evolution of "transport barriers" in the flow, i.e. material curves and surfaces. We argue that a general theory of Lagrangian transport has to account for the effects of transient flow phenomena which are not captured by the infinite-time notions of hyperbolicity even for flows defined for all time. Notions of finite-time hyperbolic trajectories, their finite time stable and unstable manifolds, as well as finite-time Lyapunov exponent (FTLE) fields and associated Lagrangian coherent structures have been the main tools for characterizing transport barriers in the time-aperiodic situation. In this paper we consider a variety of examples, some with explicit solutions, that illustrate, in a concrete manner, the issues and phenomena that arise in the setting of finite-time dynamical systems. Of particular significance for geophysical applications is the notion of "flow transition" which occurs when finite-time hyperbolicity is lost, or gained. The phenomena discovered and analysed in our examples point the way to a variety of directions for rigorous mathematical research in this rapidly developing, and important, new area of dynamical systems theory

    Fundamental limitations of polynomial chaos for uncertainty quantification in systems with intermittent instabilities

    Get PDF
    Here, we examine the suitability of truncated Polynomial Chaos Expansions (PCE) and truncated Gram-Charlier Expansions (GrChE) as possible methods for uncertainty quantification (UQ) in nonlinear systems with intermittency and positive Lyapunov exponents. These two methods rely on truncated Galerkin projections of either the system variables in a fixed polynomial basis spanning the ‘uncertain ’ subspace (PCE) or a suitable eigenfunction expansion of the joint probability distribution associated with the uncertain evolution of the system (GrChE). Based on a simple, statistically exactly solvable non-linear and non-Gaussian test model, we show in detail that methods exploiting truncated spectral expansions, be it PCE or GrChE, have significant limitations for uncertainty quantification in systems with intermittent instabilities or parametric uncertainties in the damping. Intermittency and fat-tailed probability densities are hallmark features of the inertial and dissipation ranges of turbulence and we show that in such important dynamical regimes PCE performs, at best, similarly to the vastly simpler Gaussian moment closure technique utilized earlier by the authors in a different context for UQ within a framework of Empirical Information Theory. Moreover, we show that the non-realizability of the GrChE approximations is linked to the onset of intermittency in the dynamics and it is frequently accompanied by an erroneou

    Seismic Interferometry from Correlated Noise Sources

    Get PDF
    It is a well-established principle that cross-correlating seismic observations at different receiver locations can yield estimates of band-limited inter-receiver Green's functions. This principle, known as seismic interferometry, is a powerful technique that can transform noise into signals which allow us to remotely image and interrogate subsurface Earth structures. In practice it is often necessary and even desirable to rely on noise already present in the environment. Theory that underpins many applications of ambient noise interferometry makes an assumption that the noise sources are uncorrelated in space and time. However, many real-world noise sources such as trains, highway traffic and ocean waves are inherently correlated both in space and time, in direct contradiction to the current theoretical foundations. Applying standard interferometric techniques to recordings from correlated energy sources makes the Green's function liable to estimation errors that so far have not been fully accounted for theoretically nor in practice. We show that these errors are significant for common noise sources, always perturbing and sometimes obscuring the phase one wishes to retrieve. Our analysis explains why stacking may reduce the phase errors, but also shows that in commonly-encountered circumstances stacking will not remediate the problem. This analytical insight allowed us to develop a novel workflow that significantly mitigates effects arising from the use of correlated noise sources. Our methodology can be used in conjunction with already existing approaches, and improves results from both correlated and uncorrelated ambient noise. Hence, we expect it to be widely applicable in real life ambient noise studies

    Swarming in shallow waters

    Get PDF
    A swarm is a collection of separate objects that move autonomously in the same direction in a concerted fashion. This type of behavior is observed in ensembles of various organisms but has proven inherently difficult to realize in artificial chemical systems, where the components have to self-assemble dynamically and, at the same time, propel themselves. This paper describes a class of systems in which millimeter-sized components interact hydrodynamically and organize into dissipative structures that swarm in thin fluid layers. Depending on the geometry of the particles, various types of swarms can be engineered, including ensembles that rotate, follow a "leader", or are pushed in front of a larger particle
    corecore